Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Microbiol Spectr ; 10(3): e0109122, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1832367

ABSTRACT

Accumulating evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes various neurological symptoms in patients with coronavirus disease 2019 (COVID-19). The most dominant immune cells in the brain are microglia. Yet, the relationship between neurological manifestations, neuroinflammation, and host immune response of microglia to SARS-CoV-2 has not been well characterized. Here, we reported that SARS-CoV-2 can directly infect human microglia, eliciting M1-like proinflammatory responses, followed by cytopathic effects. Specifically, SARS-CoV-2 infected human microglial clone 3 (HMC3), leading to inflammatory activation and cell death. RNA sequencing (RNA-seq) analysis also revealed that endoplasmic reticulum (ER) stress and immune responses were induced in the early, and apoptotic processes in the late phases of viral infection. SARS-CoV-2-infected HMC3 showed the M1 phenotype and produced proinflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor α (TNF-α), but not the anti-inflammatory cytokine IL-10. After this proinflammatory activation, SARS-CoV-2 infection promoted both intrinsic and extrinsic death receptor-mediated apoptosis in HMC3. Using K18-hACE2 transgenic mice, murine microglia were also infected by intranasal inoculation of SARS-CoV-2. This infection induced the acute production of proinflammatory microglial IL-6 and TNF-α and provoked a chronic loss of microglia. Our findings suggest that microglia are potential mediators of SARS-CoV-2-induced neurological problems and, consequently, can be targets of therapeutic strategies against neurological diseases in patients with COVID-19. IMPORTANCE Recent studies reported neurological and cognitive sequelae in patients with COVID-19 months after the viral infection with several symptoms, including ageusia, anosmia, asthenia, headache, and brain fog. Our conclusions raise awareness of COVID-19-related microglia-mediated neurological disorders to develop treatment strategies for the affected patients. We also indicated that HMC3 was a novel human cell line susceptible to SARS-CoV-2 infection that exhibited cytopathic effects, which could be further used to investigate cellular and molecular mechanisms of neurological manifestations of patients with COVID-19.


Subject(s)
Apoptosis , COVID-19 , Microglia , Animals , Cell Line , Cytokines/metabolism , Humans , Interleukin-6 , Mice , Mice, Transgenic , Microglia/virology , SARS-CoV-2 , Tumor Necrosis Factor-alpha
2.
MAbs ; 14(1): 2021601, 2022.
Article in English | MEDLINE | ID: covidwho-1625321

ABSTRACT

Coronavirus disease 2019, caused by SARS-CoV-2, remains an on-going pandemic, partly due to the emergence of variant viruses that can "break-through" the protection of the current vaccines and neutralizing antibodies (nAbs), highlighting the needs for broadly nAbs and next-generation vaccines. We report an antibody that exhibits breadth and potency in binding the receptor-binding domain (RBD) of the virus spike glycoprotein across SARS coronaviruses. Initially, a lead antibody was computationally discovered and crystallographically validated that binds to a highly conserved surface of the RBD of wild-type SARS-CoV-2. Subsequently, through experimental affinity enhancement and computational affinity maturation, it was further developed to bind the RBD of all concerning SARS-CoV-2 variants, SARS-CoV-1 and pangolin coronavirus with pico-molar binding affinities, consistently exhibited strong neutralization activity against wild-type SARS-CoV-2 and the Alpha and Delta variants. These results identify a vulnerable target site on coronaviruses for development of pan-sarbecovirus nAbs and vaccines.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Antigen-Antibody Reactions , Antigens, Viral/chemistry , Antigens, Viral/genetics , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/metabolism , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin Fragments/immunology , Molecular Docking Simulation , Monte Carlo Method , Neutralization Tests , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Domains , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
3.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1580402

ABSTRACT

SARS-CoV-2, like other RNA viruses, has a propensity for genetic evolution owing to the low fidelity of its viral polymerase. Several recent reports have described a series of novel SARS-CoV-2 variants. Some of these have been identified as variants of concern (VOCs), including alpha (B.1.1.7, Clade GRY), beta (B.1.351, Clade GH), gamma (P.1, Clade GR), and delta (B.1.617.2, Clade G). VOCs are likely to have some effect on transmissibility, antibody evasion, and changes in therapeutic or vaccine effectiveness. However, the physiological and virological understanding of these variants remains poor. We demonstrated that these four VOCs exhibited differences in plaque size, thermal stability at physiological temperature, and replication rates. The mean plaque size of beta was the largest, followed by those of gamma, delta, and alpha. Thermal stability, evaluated by measuring infectivity and half-life after prolonged incubation at physiological temperature, was correlated with plaque size in all variants except alpha. However, despite its relatively high thermal stability, alpha's small plaque size resulted in lower replication rates and fewer progeny viruses. Our findings may inform further virological studies of SARS-CoV-2 variant characteristics, VOCs, and variants of interest. These studies are important for the effective management of the COVID-19 pandemic.


Subject(s)
SARS-CoV-2/physiology , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2/classification , Temperature , Vero Cells , Viral Plaque Assay , Virus Replication
4.
J Med Chem ; 64(20): 14955-14967, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1461960

ABSTRACT

Blocking the association between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) is an attractive therapeutic approach to prevent the virus from entering human cells. While antibodies and other modalities have been developed to this end, d-amino acid peptides offer unique advantages, including serum stability, low immunogenicity, and low cost of production. Here, we designed potent novel D-peptide inhibitors that mimic the ACE2 α1-binding helix by searching a mirror-image version of the PDB. The two best designs bound the RBD with affinities of 29 and 31 nM and blocked the infection of Vero cells by SARS-CoV-2 with IC50 values of 5.76 and 6.56 µM, respectively. Notably, both D-peptides neutralized with a similar potency the infection of two variants of concern: B.1.1.7 and B.1.351 in vitro. These potent D-peptide inhibitors are promising lead candidates for developing SARS-CoV-2 prophylactic or therapeutic treatments.


Subject(s)
Peptides , SARS-CoV-2 , Animals , Chlorocebus aethiops , Molecular Docking Simulation , Vero Cells
5.
Int J Biol Sci ; 17(14): 3786-3794, 2021.
Article in English | MEDLINE | ID: covidwho-1417292

ABSTRACT

COVID-19, caused by a novel coronavirus, SARS-CoV-2, poses a serious global threat. It was first reported in 2019 in China and has now dramatically spread across the world. It is crucial to develop therapeutics to mitigate severe disease and viral spread. The receptor-binding domains (RBDs) in the spike protein of SARS-CoV and MERS-CoV have shown anti-viral activity in previous reports suggesting that this domain has high potential for development as therapeutics. To evaluate the potential antiviral activity of recombinant SARS-CoV-2 RBD proteins, we determined the RBD residues of SARS-CoV-2 using a homology search with RBD of SARS-CoV. For efficient expression and purification, the signal peptide of spike protein was identified and used to generate constructs expressing recombinant RBD proteins. Highly purified RBD protein fused with the Fc domain of human IgG showed potent anti-viral efficacy, which was better than that of a protein fused with a histidine tag. Intranasally pre-administrated RBD protein also inhibited the attachment of SARS-COV-2 to mouse lungs. These findings indicate that RBD protein could be used for the prevention and treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/therapeutic use , Virus Attachment/drug effects , Administration, Intranasal , Amino Acid Sequence , Animals , Binding Sites , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Mice, Inbred C57BL , Microbial Sensitivity Tests , Protein Domains , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/pharmacology , Vero Cells
6.
J Microbiol Biotechnol ; 30(8): 1109-1115, 2020 Aug 28.
Article in English | MEDLINE | ID: covidwho-634732

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. Furthermore, the immune response against SARS-CoV-2 infection needs to be understood for the development of an efficient and safe vaccine. Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Drug Development , Pneumonia, Viral/immunology , Viral Vaccines/immunology , Adaptive Immunity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Humans , Immunity, Innate , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL